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MotivationMotivation

2

� Can I run my programs in parallel?

VS.
Explicit parallelism Implicit parallelism

fork

join

for(i=0; i < MSIZE; i++)
for(j=0; j < MSIZE; j++)

for(k=0; k < MSIZE; k++)
matmul(A(i,k), B(k,j), C(i,j))

…

Draw it b
y hand 

means explicit
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• Basic idea

...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Application

T10 T20

T30
T40

T50

T11 T21

T31
T41

T51

T12

…
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Task graph creation 

based on data 

precedence   

Task selection + 

parameters direction 

(input, output, inout)�

Resource N

Scheduling, 

data transfer,

task execution

Resource 1

Resource 2

Resource 3

Synchronization,

results transfer

Parallel Resources
(multicore,SMP, cluster, grid)�
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• Main objective: Reduce the complexity of applications development

•Complexity of writing an application for a parallel platform 
comparable to writing it for a sequential platform

• Main characteristics

• Task: unit of parallel work  

• Non intrusive programming model

• Data dependence detection

• Data renaming

• Exploitation of distant parallelism

MotivationMotivation
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app.c

app-functions.c

for(i=0; i < MSIZE; i++)
for(j=0; j < MSIZE; j++)

for(k=0; k < MSIZE; k++)
matmul(A(i,k), B(k,j), C(i,j))

void matmul(char *f1, char *f2, char *f3)
{
getBlocks(f1, f2, f3, A, B, C);
for (i = 0; i < A->rows; i++) {

for (j = 0; j < B->cols; j++) {
for (k = 0; k < A->cols; k++) {

C->data[i][j] += A->data[i][k] * B->data[k][j];
putBlocks(f1, f2, f3, A, B, C);

}

Local scenario

DesignDesign
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Middleware (Globus,
SGE, SSH)

Distributed   
architecture

app.c

app-functions.capp-functions.capp-functions.capp-functions.capp-functions.capp-functions.c

DesignDesign
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Block matrix multiplication

void matmul(char *f1, char *f2, char *f3) 

Input Input Output

interface MATMUL { void matmul (in char* f1, in char* f2, inout char* f3 
);};

GSMaster.On();
for (int i = 0; i < MSIZE; i++) {                        

for (int j = 0; j < MSIZE; j++) {                               
for (int k = 0; k < MSIZE; k++) {                               

matmul(A[i][k], B[k][j], C[i][j]);                              
}
} 

}
GSMaster.Off(0);

IDL File

Sequential code prototype

Master code

Programming examples: Block matrix multiplicationProgramming examples: Block matrix multiplication
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Programming examples

Block matrix multiplication
void matmul(char *f1, char *f2, char *f3){        

block *A;        
block *B;        
block *C;        
A = get_block(f1, BSIZE, BSIZE);        
B = get_block(f2, BSIZE, BSIZE);        
C = get_block(f3, BSIZE, BSIZE);       
block_mul(A, B, C);        
put_block(C, f3); //A and B are sources        
delete_block(A);        
delete_block(B);        
delete_block(C);

}

static block *block_mul(block *A, block *B, block *C) {
/* Pre: The three parameters must exist */        
int i, j, k;        
for (i = 0; i < A->rows; i++)                
for (j = 0; j < B->cols; j++)                       
for (k = 0; k < A->cols; k++)                             
C->data[i][j] += A->data[i][k] * B->data[k][j];       

return C;
}

Worker Code
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Successful stories Mapping of molecular potential energy hypersurfacesSuccessful stories Mapping of molecular potential energy hypersurfaces

• Total execution time: 17 hours

• Number of executed tasks: 1120

• Each task between 45 and 65 minutes

22 CPUs14 CPUs

28 CPUs
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Successful stories: Mapping of molecular potential energy hypersurfacesSuccessful stories: Mapping of molecular potential energy hypersurfaces

1. Molecular structure generation: this step involves the generation of the set of molecular structures defining
the potential energy hypersurface. The result is a large number of input data fifififiles. 

2. Electronic structure calculation: one evaluation with the electronic structure package is executed for each of 
the data files generated in step 1. Since the output of each of these evaluations is a large output file, a 
fifififiltering process that obtains the required information (molecular coordinates and total energy) is applied. 

3. Data integration: the data generated by each of the calculations in step 2 is integrated in a single ASCII file. 
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GRIDSs + MPI + OpenMP: Reverse Time Migration (RTM)GRIDSsGRIDSs + MPI + + MPI + OpenMPOpenMP: Reverse Time : Reverse Time MigrationMigration (RTM)(RTM)



GO-ESSP Workshop, Hamburg, 7 October 2009

• GridSuperscalar can have its own replica management

• Applications see the directory tree of their matter, but files may be in any node 

• Hopefully replicated

• Potential benefits:

• Keep results obtained by one computation to be used by a different one

• Results are kept in the node that computed them, but are accessible from any node

• Results reused by many jobs can be stored in all nodes that used them

• Increases the probability of running a job without having to move the data

• All is transparent to the applications (as long as the same names are used)

The runtime: Replica managementThe runtime: Replica management
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JRA4, task 3: operational services

• Definition of an initial testbed

• Multimodel ensemble mean of CMIP5 data held at BADC and WDCC, 
using CDO regridding; evaluation of netcdf4 compression

• Integration in GRIDSs of the dynamic status of the network and 
monitoring services (vERC service monitoring, NA2)

• Fortran bindings, replica management and intermediate files handling

• Management of the results between different executions 

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities
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JRA4, task 3: operational services. OPEN ISSUES

• Relation to ESG

• Data acces (wget, OPeNDAP, GridFTP..)

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities
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NA2 Task4: "Prototype ESM Grid environment"

• Use of the same testbed of JRA4

• Pipelining of the execution of the Echam5 standalone model and of 
the post-processing of the results (CMCC)

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

Euro-Mediterranean
Center for Climate Change
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IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

Euro-Mediterranean
Center for Climate 
Change
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IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities
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Q&A

http://www.bsc.es/grid/grid_superscalar
daniele.lezzi@bsc.es


